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Abstract— Despite significant research developing 

myoelectric prosthesis controllers, many amputees have 

difficulty controlling their devices due in part to reduced 

sensory feedback. Many attempts at providing supplemental 

sensory feedback have not significantly aided control. We 

hypothesize this is because the feedback provided contains 

redundant information already provided by vision. However, 

whereas vision provides egocentric, position-based feedback, 

sensory feedback tied to joint coordinates may provide 

information complementary to vision.  In this study, we tested 

if providing audio feedback of joint velocities can improve 

performance and adaptation to dynamic perturbations while 

controlling a virtual limb. While subjects performed time-

controlled center-out reaches, we perturbed the dynamics of 

the system and measured the rate subjects adapted to this 

change. Our results suggest that initial errors were reduced in 

the presence of audio feedback, and we theorize this is due to 

subjects identifying the perturbed limb dynamics sooner. We 

also noted other possible benefits including improved muscle 

activation detection. 

I. INTRODUCTION 

For many upper-limb amputees, myoelectric prosthetic 
devices represent the current standard of restoring 
functionality. Recent studies have focused on extending 
myoelectric control to simultaneous movements of multiple 
degrees of freedom (DoFs) through pattern recognition or 
regression algorithms [1], [2]. However, these controllers are 
initially difficult to use and require a period to learn how to 
control the device [3]. Part of this learning is associated with 
making repeatable contractions [4]; however, it is likely that 
this learning is also partly attributed to the users recognizing 
the dynamical properties of the device.  Reduced sensory 
feedback due to missing or damaged sensory organs (e.g. 
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proprioceptors, mechanoreceptors, nociceptors) may 
contribute to this difficulty [5].  

There have been several attempts to provide feedback via 
sensory substitution to improve performance, though few 
were successful in doing so with vision feedback present [6]. 
For example, Ninu et al. showed that grasping force, 
commonly studied in sensory substitution, can be estimated  
with vision alone by watching the velocity of the closing 
prosthesis [7]. Successful studies are able to improve 
performance by providing complementary sensory 
information not provided by vision, such as tactile 
information [8]. Additionally, studies suggest that providing 
feedback in a discrete fashion may be more beneficial for 
some tasks, confirming completion of a task more clearly 
than continuous feedback [9]. Effective sensory substitution 
requires not just providing a stimulus, but also consideration 
of how it will be interpreted by the user. For example, it is 
important for stimuli provided for one task to allow users to 
generalize their performance to other tasks [10]. Sensory 
substitution should also provide information not available to, 
or with similar or lesser variance than, the other intact senses, 
most notably vision [11]. 

Vision can be an extremely precise feedback modality, 
and is the most relied upon modality for amputees 
performing tasks [12]. Vision provides feedback in a global, 
egocentric reference frame [13]; therefore, less precise 
sensory substitutions providing feedback in the same global 
reference frame do not significantly improve control. 
However, the same sensory substitution providing feedback 
in a local, joint-based reference frame may provide 
information complementary to vision; one study suggests that 
joint-based velocity information is more relevant when users 
are less certain about control of their bodies than about the 
external environment [14]. Additionally, vision provides 
more precise feedback with position information [15], but is 
less precise with velocity information [16]; thus, sensory 
substitution encoding velocity information may also 
complement existing visual feedback. 

The purpose of this study is to determine if continuous, 
local reference frame-based velocity feedback improves 
performance even in the presence of vision. This study is in 
contrast to prior works that have used discrete feedback or 
provided sensory substitution in global reference frames [6]. 
Our hypothesis was tested using a continuous joint-based, 
velocity-based feedback paradigm when controlling a 2-DoF 
myoelectric interface with control perturbations. The virtual 
limb was inspired by the control of a trans-humeral prosthesis 
consisting of an elbow and wrist. Subjects performed time-
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constrained center-out reaches [17] with and without audio 
feedback, during which the dynamics of the virtual limb were 
perturbed at discrete intervals. We tested the hypothesis that 
providing joint- and velocity-based audio feedback during 
these reaches would improve the rate of adaptation to 
perturbations to the virtual limb dynamics, and that this 
improved adaptation would generalize to multiple target 
locations. 

II. METHODS 

A. Subjects 

Ten right hand-dominant, non-amputee participants were 
recruited for this study, which was approved by the 
Northwestern University Institutional Review Board. All 
subjects provided informed consent before starting the study. 

B. Experimental Protocol 

Subjects participated in two experimental sessions, 
separated by at least one day: one session with no audio 
feedback, and one session with joint- and velocity-based 
audio feedback provided. The order of these sessions was 
randomized across subjects using balanced block 
randomization. 

Subjects were seated in front of a computer monitor with 
their right arm placed in a rigid forearm brace clamped to a 
table, affixing the elbow and wrist positions. Four Delsys 
Bagnoli electromyographic (EMG) sensors were placed on 
the subject’s arm: over the biceps and triceps on the upper 
arm, and over the flexor and extensor compartments of the 
forearm. Reference electrodes were placed over the 
olecranon, and the electrode sites were wrapped with an 
elastic cohesive bandage [see Fig. 1(a)]. 

Subjects used arm and forearm EMG from isometric 
muscle contractions to control a virtual two-link arm. EMG 
from elbow flexion applied a counter-clockwise torque to 
the proximal linkage; EMG from elbow extension, 
clockwise torque. EMG from wrist flexion applied a 
counter-clockwise torque to the distal linkage; EMG from 
wrist extension, clockwise. Links were simulated with a 
length of 10 cm, a mass of 5 kg, and a damping coefficient 
of 1.5 Ns/m. 

During the audio feedback session, subjects wore a pair 
of noise-canceling headphones (Bose Corporation, 
Framingham, MA). Audio feedback consisted of two pitches 
whose volumes were proportional to the speed of the two 
virtual linkages; the speed of the proximal linkage 
determined the amplitude of a 200 Hz pitch, and the speed of 
the distal linkage determined the amplitude of a 300 Hz 
pitch. 

Subjects completed the following experimental tasks [see 
Table I]: 

1) System Tuning 
EMG gains and dead zones were tuned during a free 

exploration session lasting only a few minutes, where 
subjects were permitted to control the virtual arm and explore 
the workspace with no objective, allowing users to become 
familiar with the dynamics of the system. 

2) Free Training 
Subjects completed 100 free training trials; during free 

training, subjects performed center-out reaches towards one 
of four 2 cm diameter targets located 14 cm from the home 
position (25 reaches towards each target, in randomized 
order) [See Fig. 1(b)]. When the cursor of the arm stopped 
within the target, the arm was reset to the starting position 

 

 
Figure 1. Experiment Layout. (a) Experiment setup. The hand was 

immobilized in a forearm brace. EMG Electrodes placed over the upper 

arm and forearm controlled the virtual arm displayed on the screen. (b) 

Virtual environment. The cursor of the virtual arm would begin each trial 

at the home position (blue circle). One of four random targets would 

appear (green +), and subject would reach for the target (faded blue). 

During familiarization trials and the testing blocks, a ball (grey circle) 

would appear above the target; once the arm cursor left the home circle, 

the ball would drop, aligning with the target 1.5 seconds after dropping. 

TABLE I. EXPERIMENTAL TASKS 

Experimental 

Protocol 
Free Training Familiarization 

Testing Blocks 

Baseline 
No 

perturbation 
Perturbation 

Left 

generalization 

Right 

generalization 

Time-

Constrained 
No Yes Yes 

Trials 
100 (random 

targets) 

100-200 (random 

targets) 

40 (random 

targets) 

20 (far-right 

target) 

20 (far-right 

target) 

20 (top-left 

target) 

20 (top-right 

target) 

Perturbation No No No No Yes Yes Yes 

 



  

and a new target was presented. 

3) Familiarization 
Subjects completed 100 familiarization trials introducing 

them to the protocol of the testing blocks. The protocol was 
similar to free training (25 reaches towards each of four 
targets); however, subjects were instructed to reach the target 
at 1.5 seconds after leaving the 5 cm diameter home circle 
[17]. This time-constrained task was used to ensure similar 
movement profiles across trials. A ball was shown above 
each target, and began dropping at a constant speed when the 
cursor left the home circle [see Fig. 1(b)]. This ball would 
align concentrically with the target at 1.5 seconds, thus 
indicating when the subject was to reach the target. If the 
subject moved for longer than 2 seconds, the trial was 
marked as timed out. Subjects were also instructed to 
complete the reach in a single fluid movement; if the cursor 
speed dropped below 1 cm/s, the trial ended, the arm was 
reset to the starting position, and a new target was presented. 
After completing 100 familiarization trials, if subjects did not 
stop within a ±0.25 second time window for at least 40% of 
the trials, or if they desired additional practice, they 
completed a second set of 100 familiarization trials.  

4) Testing Blocks 
Subjects performed 40 baseline reaches towards the four 

targets (10 reaches towards each target, in randomized order) 
to provide a baseline performance, before making 20 reaches 
towards the far-right target (no perturbation trials). The 
dynamic properties of the simulated arm were then perturbed 
by reducing the damping coefficient of each linkage to 0.5 
Ns/m; this perturbation was used to promote adaptation to an 
intrinsic disturbance [14]. Subjects performed 20 additional 
reaches towards the far-right target with the new dynamics 
(perturbation trials). Following this, subjects performed 20 
reaches towards the top-left target (left generalization) and 
20 reaches towards the top-right target (right generalization), 
for 120 total trials. 

C. Performance Metrics 

Two performance metrics were calculated for each trial: 
Euclidean distance between the cursor and the target at 1.5 
seconds (when the timing ball was concentrically aligned 
with the targets), and the average cursor speed during the 1.5 
seconds of movement. Both metrics were adjusted by 
subtracting the average from the baseline trials to account for 
varying accuracy and speeds to different targets. From these 
performance metrics, adaptation during perturbation, left 
generalization, and right generalization trials were 
calculated for each subject by fitting the data to an 
exponential decay function (ae

-λx
), where a, the exponential 

decay gain, represents the overall magnitude of error, and λ, 
the exponential decay rate, represents the adaptation rate. 
Additionally, experiments were video- and screen captured, 
allowing for subsequent observation of subject performance. 

III. RESULTS 

Sample data from a representative subject are shown in 
Figure 2. Reaches towards the far-right target during no 
perturbation trials (black) are consistent and accurate. 
However, when movement dynamics are perturbed (grey), 
movement becomes more erratic [see Fig. 2(a)]. This can be 
seen in the increase in distance from the target and average 

movement speed immediately after trial 60 [see Fig. 2(b)]. 
However, subjects typically quickly adapted to this change 
and restored their performance to baseline levels. 
Furthermore, while we expected to see an increase in error 
during initial reaches towards both generalization targets, 
these initial reaches were often near baseline performance. 

A. Euclidean Distance 

During no perturbation trials, Euclidean distance was 
unchanged from the baseline trials, as expected [see Fig. 
3(a)]. After the system dynamics were perturbed, there was a 
trend to an increase in Euclidean distance error during the 
first few perturbed trials, especially when audio-feedback 
was not provided. This is supported by the exponential fit 
gains, which are lower on average with audio feedback 
present [see Table II].  This increase tapered to baseline 
values within the first few trials.  There were no clear trends 
during either of the generalization blocks, which may 
indicate that subjects were capable of adapting their control 
over the entire movement space. 

B. Average Cursor Speed 

As with Euclidean distance, during no perturbation trials 
the average cursor speed was unchanged from baseline trials 
[see Fig. 3(b)]. After the system dynamics were perturbed, 
cursor speed increased due to the reduced damping term in 
the dynamics of the limb. This speed increase appears to be 
greater in the absence of audio feedback, as shown both in 
the figure and in the increased exponential fit gains [see 

 

 
Figure 2. Sample data from representative subject. (a) Individual subject 

movement profiles during testing block, starting at trial 41. Subject was 

provided audio feedback in this testing block. Trace colors represent no 

perturbation (black), perturbation, left generalization, and right 

generalization (grey) trials. (b) Individual subject performance during 

testing blocks. Vertical dashed lines separate between testing block 

subsections. Horizontal dashed lines indicate mean ± standard deviation 

for the corresponding target during baseline trials. Example exponential 

decay curves are fit to the data. 



  

Table II]. Similar to Euclidean distance error, these increases 
lessened over time, generally returning to baseline levels after 
a few trials. However, unlike trends for Euclidean distance, 
there appeared to be a second spike in cursor speed during 
initial reaches towards the left generalization target, with 
similar adaptation profiles as subjects adjusted their 
movements; furthermore, this error spike appears smaller 
during audio feedback blocks. There was no clear increase in 
speed during right generalization trials. 

IV. DISCUSSION 

Two of the most desirable features of trans-humeral 

prostheses are the simultaneous and proportional control of 

multiple joints to perform coordinated movements, and a 

reduction in visual attention required to perform certain 

functions [18]. Sensory feedback and proprioception of the 

prosthetic limb are key components to addressing these 

limitations, but restoring these senses remains a major 

challenge facing myoelectric prostheses [5]. Closed-loop 

control for prosthetic devices is a vital part of correcting for 

errors, and plays an even greater role in learning unintuitive 

or arbitrary control mappings [19]. If sensory feedback 

provides the same information as intact senses (such as 

vision) but with greater uncertainty, this redundant feedback 

has little effect on the final state estimate [20]. 
In this study, we investigated a joint- and velocity-based 

feedback paradigm’s effect on subjects’ myoelectric control 
of a 2-DoF virtual limb to determine if sensory feedback 
provided in a local reference frame complemented visual 
feedback provided in a global reference frame. The dynamics 
of the virtual limb were perturbed during use to calculate 
performance impact and adaptation to the new dynamics 
(perturbation trials), and to determine if this adaptation was 
in a local or global frame (generalization trials).  

These preliminary results suggest that, while subjects 
were able to adapt both their movement errors and movement 
speed to the perturbed dynamics of the virtual limb over time 
and return to baseline performance, initial errors were smaller 
when audio feedback was present. We theorize that this 
reduction is because the feedback was providing joint-based 
and velocity-based, rather than Cartesian-based, information 
continuously throughout the movement, allowing subjects to 
identify earlier within the trial that the dynamics were 
perturbed and facilitated earlier adaptation. This hypothesis is 
supported by the increase in average speed over the first few 
perturbation trials; because vision is relatively imprecise in 
determining speed [16] compared to position [15], providing 
separate channel of feedback encoding the velocity of the 
virtual limb should improve subjects’ control over limb 
velocity. Providing continuous joint- and velocity-based 
feedback also serves to provide, in essence, an efference copy 
of control inputs resulting in limb movements. By directly 
providing this efference copy through a different sensory 

 
Figure 3. Baseline-adjusted performance during testing blocks. Baseline values are subtracted from raw metrics. Bold lines represent trial mean and dashed 

lines represent trial standard error, averaged across subjects. No perturbation and perturbation trials are reaches towards the far-right target. Left and right 

generalization trials are reaches towards the top-left and top-right target, respectively. (a) Baseline-adjusted Euclidean distance during testing blocks. (b) 

Baseline-adjusted cursor speed during testing blocks. 

TABLE II. EXPONENTIAL DECAY COEFFICIENTS 

Testing Block Trials 
No perturbation Perturbation Left generalization Right generalization 

Mean SD Mean SD Mean SD Mean SD 

Euclidean Distance 

Gain (a) 
No Audio 1.8301 0.8161 4.4850 2.5672 4.4570 3.2364 3.7114 1.7369 

Audio 2.8499 2.1197 3.8536 1.9776 4.7969 2.9304 3.2280 1.4827 

Decay (λ) 
No Audio 0.0168 0.0165 0.0495 0.1103 0.0243 0.0175 0.0051 0.0097 

Audio 0.0217 0.0412 0.0208 0.0223 0.0243 0.0301 0.0172 0.0210 

Average Speed 

Gain (a) 
No Audio 9.9902 1.5725 14.8030 6.6565 13.2431 4.5590 11.5764 2.0910 

Audio 10.1743 2.4703 12.7602 4.0401 12.8875 4.3142 11.7763 3.2187 

Decay (λ) 
No Audio 0.0008 0.0017 0.0261 0.0198 0.0115 0.0081 0.0064 0.0068 

Audio 0.0012 0.0018 0.0141 0.0112 0.0144 0.0168 0.0052 0.0068 

 



  

modality, our feedback paradigm enables subjects to develop 
a better feedforward model of the prosthesis control [21], 
ultimately resulting in an improved ability to adapt to 
perturbations and to generalize this improvement across the 
entire workspace. 

When asked to provide subjective feedback, several 
subjects commented that the audio feedback helped them to 
recognize when they were unintentionally contracting their 
muscles, allowing them to relax their muscles to prevent the 
virtual arm from making unintended movements, particularly 
between trials while waiting for the target to appear. These 
comments appear to support the results of Cipriani et al. [9], 
who found that humans are capable of integrating feedback 
of discrete events, such as finger contact with grasped 
objects, into their sensorimotor control. One can argue that 
the binary state of muscle activation (below- or above 
movement threshold), and the corresponding continuous 
audio feedback (below- or above hearing threshold) are 
discrete events, and thus subjects may have been 
incorporating these discrete events in their control of the 
virtual limb during this study. In addition to the tested 
hypothesis, there are several other possible benefits of 
sensory feedback that were not investigated during this study. 
One such benefit is prosthesis embodiment. Studies have 
shown that providing sensory feedback with prosthesis use, 
regardless of modality, can improve the user’s embodiment 
of the prosthesis and make them feel more connected to the 
device [8], [22], [23]. 

We originally expected that the perturbation would 
influence the generalization trial performances more than 
what was observed. We believe that this was likely due to our 
choice of perturbation. The change in damping uniformly 
affected the workspace. If we were to have implemented a 
curl field or other external perturbation [10], we may have 
found greater differences at the generalization targets. We 
also did not expect that subjects would adapt before the first 
trial was completed. However, upon examining video capture 
of subjects performing the task, the within trial adaption was 
apparent. 

Sensory feedback remains an expansive field of study 
with many challenges yet to be overcome. However, 
addressing these challenges will give us an improved 
understanding of how humans incorporate multiple sources 
of sensory inputs, ultimately leading to improved prosthetic 
devices capable to restoring greater functionality and quality 
of life. 
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